
CEWES MSRC/PET TR/98-24

VisGen Cross-Platform Visualization

by

M. Pauline Baker

04h01798

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

VisGen Cross-Platform Visualization

M. Pauline Baker
NCSA

University of Illinois

March 1998

Abstract: In this focused effort, we are developing strategies that will
allow us to build visualization tools for both the desktop and virtual reality
display systems. We have taken care to encapsulate the functionality
involved in mapping data to graphic form. This visualization-generator
capability is then coupled with various user interfaces and used in various
settings. To date, we have used our visualization generator in a desktop
tool, and a Web-based VRML-server tool. We are working towards
incorporation in an ImmersaDesk tool. In this setting, the VisGen code
will be coupled with a multimodal interface, utilizing speech and gesture
at the interface, and augmenting the visualization with non-speech audio.

1 Introduction

Virtual reality offers new functionality for visual data analysis. Stereoscopic viewing,
multimodal interfaces, and high levels of interactivity all contribute to the experience of
visualization in virtual reality. While the field is still quite immature, many prototype
applications have been built. These are usually custom tools, often for a single
application. Generally, they have little in common with desktop visualization tools that
might be familiar to a scientist. Additionally, these tools take considerable time and
effort to build and, once complete, usually run only on the virtual reality hardware.

In this report, we describe early efforts to build a visualization tool that executes on the
desktop as well as on the ImmersaDesk. There are three issues that are significant in this
endeavor: (1) how much of the visualization generation code can be reused?, (2) how to
accommodate two very different display architectures?, and (3) how to support two very
different user interfaces?

2 Visualization Generation

In this project, we isolated and encapsulated the functionality involved in reading data

2

and generating graphical representations of that data. In particular, we were careful to
insure that there were no dependencies between this functionality and the user interface
or the display device.

Encapsulation of this kind of functionality might seem like an obvious thing to do. The
well-known visualization package AVS adopted "modules" as a fundamental building
block for the whole system. Each AVS module is specialized to do one particular job --
to read data, to filter the data in some way, to extract an isosurface, to calculate a particle
trajectory, etc. There have been several attempts to use AVS on the ImmersaDesk or in
the CAVE. This is seen as particularly desirable given the completeness of the AVS
package. And, at first glance, the module structure would seem to lend itself well to
providing a general-purpose visualization solution for virtual reality devices such as the
ImmersaDesk. However, AVS made the design choice that each "module" includes the
code to do its particular job, accompanied by the user interface code to manipulate the
parameters associated with the task. That is, the isosurface module contains code to
generate the surface polygons and code to draw and read from a user interface widget to
set the isosurface threshold. Bundling the interface code along with the module's true
task restricts the module's usefulness to the desktop screen, and limits its ability to
transfer into the virtual reality arena.

In the VisGen effort, we have separated out the visualization generation functionality
from any notion of user interface. We are leveraging the excellent work done on the
freely available package, the Visualization ToolKit. We use VTK to implement the
particular visualization algorithms that are of interest. VTK, like AVS, provides a large
collection of visualization algorithms. However, VTK has a cleaner design in that user
interface code is not bundled with the code to map data to geometry. This makes VTK an
ideal choice for VisGen. The visualization generation functionality can be coupled with
an appropriate interface and used in a variety of settings. To date, we have used the
VisGen in three applications.

1. The most complete application is a traditional desktop tool. This tool
reads the output of CE-QUAL-IQM and generates a variety of visual
representations including isosurfaces, slices, volumes, etc. A beta version
of this tool is currently in use by the Chesapeake Bay team at the CEWES
MSRC. A preliminary User's Guide appears as Appendix A.

2. An emerging application for the VisGen is as the visualization generation
functionality in a Virtual Reality tool for visual data analysis. It is
premature to describe this use, except to say that different user interface
techniques are required, and a different display method is used.

3. VisGen was also used in a prototype of a VRML-generator visualization
tool. This type of visualization tool would be particularly useful to service
the visualization needs of remote MSRC users. In this system, the
researcher uses a Web form to indicate what data they were interested in

3

and to specify the visualization they needed. The Web form generates a
request that is processed by a transaction broker. The transaction broker
sends the user request to a VisGen instance. The VisGen services the
request by generating and returning the visualization using VRML.

3 Targeted Displays

As described above, this effort aims to encapsulate visualization generation functionality
such that the capabilities can be used across platforms. While we were initially interested
in cross-platform use involving the desktop and the ImmersaDesk, we have found it
useful to also consider VRML browsers as a target display.

In the desktop tool, we use a variety of rendering and display strategies. The VisGen can
draw directly to the screen, using OpenGL. Alternatively, VisGen can capture a
visualization as an image or a VRML file. This has been particularly useful for sharing
visualizations on the Web, providing a form of asynchronous collaboration. We
anticipate utilizing the same or similar functionality to support synchronous
collaboration. We have done some experimentation with capturing the visualization as a
RIB file. This is the standard file format used by RenderMan. Coupled with the
RenderMan rendering system (we use the public domain version from Blue Moon), this
provides a way to generate high-quality rendering of the visualization.

Virtual reality environments, such as the CAVE, are nicely supported by the graphics
library Performer from SGI. VisGen can be used with Performer by building a translator
that can convert from the VisGen/VTK geometry format to the Performer data format.
As this strategy matures, it will be incorporated into the ImmersaDesk version of this set
of cross-platform tools.

4 User Interfaces

As described above, the Web-accessible VRML-generator using VisGen relies only on
Web forms for its user interface. In time, we will update this interface to use Java, which
will provide for a richer, more complete interface. The desktop VisGen tool provides an
easy-to-use, point-and-click interface, implemented using TCL/Tk.

It is the ImmersaDesk interface, as a virtual reality interface, that has the potential to
offer the most interesting, multimodal user interface. The standard user interface device
for the ImmersaDesk is the wand -- a hand-held, 6 DOF device, with 3 buttons and a
thumb-activated joystick. For many applications, the wand is sufficient. For example, in
architectural walkthroughs or other applications where the user simply travels through a
virtual world, activating travel through a wand button and directing travel through the
joystick's orientation works very well. The user interface for applications involving
visual data analysis are far more complex, since the user must specify many parameters
to define the visualization.

4

We have found a speech interface to be extremely helpful as an component in virtual
reality applications. Until recently, speech interfaces were limited to systems that were
speaker dependent, requiring training for each new user, and were often constrained to
discrete words. Newer systems, commercially available and competitively priced, are
speaker independent and support complex phrases and whole sentences. We are
currently working with IBM's ViaVoice speech-recognition system. The developer kit
available for this recognition engine supports the specification of a grammar defining the
set of spoken strings comprising the speech interface. The grammar is a set of production
rules. Alternatives are supported, so the grammar can be rich and natural-sounding. As
part of this effort, we have written supporting software to make this functionality easy to
use and embed in a virtual reality application. This software will be used in the
ImmersaDesk VisGen.

We are also experimenting with using gesture to drive virtual reality applications. While
gloves have been used in many virtual reality labs, we are beginning to use bare-hand
gesture. This has the advantages of being free of all cords or other encumbrances.
Cameras are mounted to the ImmersaDesk to record the user's hand and arm movements.
Image-processing algorithms sort out the camera data stream and decode the user gesture.
Currently, the "gesture" is of limited form -- position and orientation of the arm is traced
and fed to the application. It is premature to think about using this technology to drive a
complex visualization application, but bare-hand gesture will offer considerable
advantages once it matures.

5

Appendix A

VizGen User's Guide

Version 1.0c Draft 1.0

Step-By-Step Tutorial

Code Developor: Robert Stein

Manual : Alan M. Shih

Sample Problem: Chesapeake Bay Water Quality Simulation
Performed by Dr. Carl Cerco et al. at Army Corp of Engineers Waterways Experiment Station

Contents:

Preparing Directories and Files

Converting Data

Basic Steps of VizGen

Creating Animations

Sample Results

6

Preparing Directories and Files

Step 1

Arrange
the
directories
and files

Make sure that the data and files are in right place

Step 2 Check Data/ directory is created under VizGen

Step 3 Check Binaries/ directory is created under VizGen/Data/

Step 4 Check
All the executables are present in the directories as
layout

Step 5 Check

The path on the first line of CreateBin.tcl and
VizGen.tcl should be modified to the right path for
"wish". Example path is set to be
"#!/usr/local/bin/wish"

7

Converting Data

VizGen 1.0c requires the data to be converted into a binary format from
wqm_apl.opt Following steps guide you through this painless process:

 Step 1 Change directory to VizGen/

Step 2 Type CreateBin.tcl

Step 3
On the graphical user interface (GUI), select the property that you
like to visualize, then press Add

Step 4
You can repeate Step 3 to add more properties onto the list at the
right

Step 5
Once all the properties are all selected into the right-hand side, Press
Start

Step 6
When all the data has been converted, a final staticstics will show
up. Press Quit

Step 7 Check if all the binary files are created in VizGen/Data/Binaries

8

 Basic Steps of VizGen

Step 1
Execute the
program

Type "go" or "cbay -f cbay.ini -gui VizGen.tcl"

Step 2 Read data Press "Add" under "DataNodes"

Step 3
Change to
data
directory

Double click on "Data/" and then "Binaries/" on the file
selector

Step 4 Select data Double click on the name of data file (e.g. salinity.bin)

Step 5 Create slice Press "Add" under "VizNodes"

Step 6
Initial
image
shown

Click "Slice" and "Salinity" on the panel

Step 7

Access
SLICE
property
panel

Double click the name "Slice" on the Viznode browser.
(NOTE that the image will be reset to Z=0 at the first
time)

Step 8
Change the
location of
the slice

Input or slide the value to the value needed.

Step 9
Change the
MinMax of
Data

Double click on the name of data (e.g. Salinity) in
DataNode browser. Slides the MinMax values and
press "Apply ". Before and After.

9

Creating Animation

The following steps produce a movie file in QuickTime Movie format.

 Step 1
Access the
Movie output
panel

Press the button Movie at the lower right corner

Step 2
Assign file
name

Type a output file name, say, mymovie.mv

Step 3
Start
recording

Press Start

Step 4 Start Animate Press Play

Step 4 Stop recording Press Stop

Step 5
Review
recorded file

* Type "movieplayer mymovie.mv"
or
* Go to your Web browser, open the file
mymovie.mv
(Note: You need to have proper plug-in in your Web
brower to view the movie). Check it out with this
clip!

